Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ya-Yin Fang, ${ }^{\text {a }}$ Ya-Mei Guo, ${ }^{\text {b }}$
Miao Du, ${ }^{\text {b }}$ * He Liu, ${ }^{\text {b }}$ Xue-Bing Leng ${ }^{\text {b }}$ and Ruo-Hua Zhang ${ }^{\text {b }} \boldsymbol{+}$
${ }^{\text {a Department of Chemistry, Xuzhou Normal }}$ University, Xuzhou 221009, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

\dagger Additional correspondence author.
Correspondence e-mail:
dumiao@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.104$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3,7,8-Tetrakis(2-pyridyl)pyrazino[2,3-g]quinoxaline

The title compound, $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{8}$, is a crystallographically centrosymmetric molecule. The pyrazine ring makes dihedral angles of $43.6(3)$ and $33.0(2)^{\circ}$ with the two independent pyridine rings, and the dihedral angle between the two pyridine rings is $58.3(3)^{\circ}$. The favoured orientation of the pyridine rings is such that their N atoms face each other.

Comment

Bridging polypyridyl ligands have been actively studied in recent years as building blocks for supramolecular assemblies (Hagrman et al., 1999; Leininger et al., 2000). Some of the polypyridyl compounds are of considerable interest because of the potential functionality of their metal complexes as photonic molecular devices (Eggleston et al., 1997; Miller et al., 1999) and DNA probes (Yam et al., 1995; Holmlin et al., 1999). Incorporating a ligand with two chelating sites into the coordination sphere allows systematic construction of large supramolecular assemblies capable of acting as antennae in energy-conversion schemes, where the photochemical and redox properties of the complexes are strongly dependent on the nature of the ligands (Waterland et al., 2000). Since the stereochemistry of such compounds is so useful in the rational design of new functional materials, we report herein the crystal structure of 2,3,7,8-tetrakis(2-pyridyl)pyrazino[2,3-g]quinoxaline, (I). In this structure, there is half a molecule in the asymmetric unit and the other half is inversion-related.

(I)

A perspective view of the title compound including the atomic numbering scheme is shown in Fig. 1. It consists of a pyrazino[2,3-g]quinoxaline system substituted with four pyridine rings. The two independent pyridine rings are not coplanar with each other nor with the pyrazine ring due to steric clashes between the H atoms of the pyridine rings. The torsion angle between the $\mathrm{C}-\mathrm{C}$ bonds connecting the pyridine rings to the pyrazine ring ($\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$) is $19.4(3)^{\circ}$.

Received 19 March 2001 Accepted 23 March 2001 Online 6 April 2001

Figure 1
The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted.

The pyrazine ring makes dihedral angles of 43.6 (3) and $33.0(2)^{\circ}$ with the two independent pyridine rings. The dihedral angle between the two pyridine rings is 58.3 (3) ${ }^{\circ}$ and their N atoms face each other. In the central C_{6} ring and the pyrazine ring, the mean deviation of any atom from the best-fit planes describing them are 0.0046 (1) and 0.0369 (3) \AA, respectively. Furthermore, all non-H atoms in the pyrazino[$2,3-g]$ quinoxaline system lie roughly in a plane: the mean deviation of any non-H atoms from the best-fit plane describing them is 0.0522 (2) \AA. These distortions from planarity in the molecule are similar to those in its analogues (Rasmussen et al., 1990; Du et al., 2001). The $\mathrm{C}-\mathrm{N}$ bond distances lie in the range 1.306 (3)-1.382 (2) \AA and are significantly shorter than normal $\mathrm{C}-\mathrm{N}$ single bonds (1.47 \AA; Sasada, 1984) and longer than the $\mathrm{C}=\mathrm{N}$ double-bond distance ($1.28 \AA$; Wang et al., 1998) due to the π-electron repulsion of the system. The $\mathrm{C}-\mathrm{C}$ bond distances are in the range 1.367 (4)-1.489 (3) \AA and all the bond angles are about 120°, falling within normal limits. There are no hydrogen bonds or $\pi-\pi$-stacking interactions between different molecules in the unit cell.

Experimental

The title compound was synthesized by the reaction of $1,2,4,5-$ benzenetetramine and $2,2^{\prime}$-bipyridyl in a $1: 2$ molar ratio. Single crystals suitable for X -ray diffraction were obtained by slow diffusion of diethyl ether into a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ solution of the compound. The product was characterized by NMR and mass spectrometry, giving results consistent with those in the literature (Rillema \& Mack, 1982).

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{8}$	$D_{x}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=490.52$	Mo $K \alpha$ radiation
Monoclinic, $P 2 / c$	Cell parameters from 4465
$a=15.061(5) \AA$	reflections
$b=6.2184(19) \AA$	$\theta=1.5-25.0^{\circ}$
$c=13.908(4) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=114.398(5)^{\circ}$	$T=298(2) \mathrm{K}$
$V=1186.3(6) \AA^{3}$	Prism, yellow
$Z=2$	$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

$M_{r}=490.52$
Monoclinic, $P 2 / c$
$a=15.061$ (5) A
$c=13.908(4) \AA$
$\beta=114.398$ (5) ${ }^{\circ}$
$Z=2$

Data collection

Bruker SMART 1000 diffract-
ometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.983, T_{\max }=0.987$
4515 measured reflections

2046 independent reflections
1217 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 17$
$k=-3 \rightarrow 7$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.104$
$S=0.94$
2046 reflections
173 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0466 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.008$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0092 (15)

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

N1-C5			
N1-C1	$1.335(3)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.307(3)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.339(3)$	$\mathrm{N} 3-\mathrm{C} 14$	$1.382(2)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.306(3)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.335(3)$
	$1.375(2)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.338(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$			
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 13$	$116.6(2)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$116.03(19)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 14$	$118.11(18)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8$	$114.82(18)$
$\mathrm{C} 12-\mathrm{N} 4-\mathrm{C} 8$	$118.25(18)$	$\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 9$	$123.10(19)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$116.4(2)$	$\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 7$	$115.70(19)$

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998).

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 29771022 and 29971019), the Tianjin Natural Science Foundation and the Trans-Century Talents Training Program Foundation from the State Education Ministry of China.

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, M., Bu, X.-H., Liu, H. \& Leng, X.-B. (2001). Acta Cryst. C57, 201202.

Eggleston, M. K., McMillan, D. R., Koenig, K. S. \& Pallenberg, A. J. (1997). Inorg. Chem. 36, 172-176.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.
Holmlin, R. E., Yao, J. A. \& Barton, J. K. (1999). Inorg. Chem. 38, 174 189.

Leininger, S., Olenyuk, B. \& Stang, P. J. (2000). Chem. Rev. 100, 853908.

Miller, M. T., Gantzel, P. K. \& Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.
Rasmussen, S. C., Riohter, M. M., Yi, E., Place, H. \& Brewer, K. J. (1990). Inorg. Chem. 29, 3926-3932.

organic papers

Rillema, D. R. \& Mack, K. B. (1982). Inorg. Chem. 21, 3849-3854.
Sasada, Y. (1984). Molecular and Crystal Structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, Z.-X., Jian, F.-F., Duan, C.-Y., Bai, Z.-P., You, X.-Z. (1998). Acta Cryst. C54, 1927-1929.
Waterland, M. R., Flood, A. \& Gordon, K. C. (2000) J. Chem. Soc. Dalton Trans. pp. 121-127.
Yam, V. W. W., Lo, K. K. W., Cheung, K. K. \& Kong, R. Y. C. (1995). J. Chem. Soc. Chem. Commun. pp. 1191-1193.

